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The layer of adsorbate molecules and adsorbent
atoms at the gas/solid interface is an open nonideal
system exchanging matter and energy both with the
gas phase and with the solid [1]. In such a system,
there can be nonlinear phenomena, such as steady
state multiplicity (SSM), self�oscillations, and spa�
tiotemporal organization [2–7]. These phenomena
are observed at all levels, from the nanometer level and
on. The microscopic order determines the character of
the nonlinear variation of the rates of elementary reac�
tions and, accordingly, the rate of overall catalytic pro�
cess at the mesoscopic level. The basic microlevel
parameter is the energy of interaction between
adsorbed particles. In turn, mesoscopic processes can
exert an effect on the processes taking place at the
micro and nano levels. The nonlinear variations of the
reaction rate at the meso and macro levels (kinetic
model) fully determine the conditions for stable, safe,
and optimal operation of industrial reactors. There�
fore, elucidating the correlation between the reaction
rate at the micro and nano levels and the reaction rate
at the meso and macro levels is very essential for heter�
ogeneous catalysis. The processes occurring at the cat�
alyst surface were demonstrated earlier to be describ�
able using the transfer matrix method [2, 8].

The mathematical models considered here were
constructed at the macro level using the lattice gas
model nd the transfer matrix method [9–11]. The
atomic structure of the surface and microlevel param�
eters (energies of lateral interparticle interactions on
the catalyst surface) were taken into account in calcu�
lating of thermodynamic functions (chemical poten�
tials). Since only the one�dimensional lattice gas

model can be analytically described, the approach
suggested here will be illustrated by the simplest exam�
ple in which there is a single intermediate; that is, this
approach will be applied to the unimolecular and
bimolecular Eley–Rideal mechanisms.

Consider the following two simple catalytic mech�
anisms:

(I)

and

(II)

where A, B, А2, and AB are compounds in the gas
phase, Z is the catalyst, and AZ is the intermediate. In
both mechanisms, the first reaction (adsorption) is
reversible and the second reaction is irreversible. The
set of reactions (I) corresponds to the unimolecular
Eley–Rideal mechanism; the set of reactions (II), to
the bimolecular one.

According to the law of surface mass action, the
material balance equations in terms of surface cover�
ages for mechanisms (I) and (II) will appear as

(1)

and

(2)

where θ is the surface coverage for compound A; ka, kd,
and kR are the rate constants of adsorption, desorp�
tion, and reaction, respectively; РА and РВ are the par�
tial pressures of compounds A and B in the gas phase,

A + Z ↔ AZ,
B + AZ → Z + AB

A2 + 2Z ↔ 2AZ,

B + AZ → Z + AB,
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which will be taken to be constant for the present. In
the ideal adsorption layer approximation, the rate
constants are independent of the surface coverage and
Eqs. (1) and (2) can easily be analyzed. For nonideal
systems, the adsorption layer will be considered in
terms of the one�dimensional lattice gas model
(LGM) and the interaction between particles located
in nearest�neighbor lattice sites will be taken into
account.

The following expressions for the rate constants of
the elementary processes were obtained earlier within
the framework of transition state theory and LGM,
without taking into the lateral interactions [12]:

(1) monomolecular adsorption and desorption,

(3)

(2) dissociative adsorption and desorption,

(4)

(3) bimolecular reaction of adsorbed species with
species from the gas phase,

(5)

In Eqs. (3)–(5), ka, 0, kd, 0, and kR, 0 are the rate con�
stants of adsorption, desorption, and reaction, respec�
tively, at small coverages; μ(θ) is the dimensionless
chemical potential of the adsorbed molecules of the
compound A; ε is the dimensionless energy of the lat�
eral interactions between the nearest neighbors; R is
the gas constant; T is absolute temperature; P00 is the
probability that two nearest�neighbor sites are empty.

In view of Eqs. (3)–(5), Eqs. (1) and (2) will appear as

(6)

(7)

Their general form is

 (8)

In order to solve these equations, it is necessary to
determine the chemical potential as a function of sur�
face coverage, i.e., μ(θ).

The inverse of the sought relationship— μ(θ) iso�
therm—can be found using the transfer matrix (TM)
method [9–11]. This method proved very efficient for
a wide variety of models and is the best complement to
the rapidly developing statistical (Monte Carlo) mod�
eling of lattice systems [13–15].

We will briefly describe this method as applied to the
simplest uniform LGM on a linear chain in which all
particles are identical and only the nearest neighbors
interact with one another. The thermodynamic Hamil�
tonian for this system can be written as follows [9]:
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Here, N is the number of sites in the chain; ni is the occu�
pancy of the ith site, which is 1 if the site is occupied and
0 is the site is empty; β = 1/RT. The following cyclic
boundary conditions are introduced here: nN + 1 = n1.

By definition, the grand statistical sum for the
model can be written as

(10)

Here, summation is performed over all possible sets
of occupancies. It can readily be seen that the expo�
nential in Eq. (10) is representable as the product of
multipliers each depending only on the occupancies of
a pair of nearest�neighbor sites:

(11)

where

(12)

The multiplier  considered as a function
of the occupancies of nearest�neighbor sites, can take
four values.

Let us write these values as a 2 × 2 matrix:

(13)

Here, the first row corresponds to ni = 0; the second
row, to ni = 1. Likewise, the first column corresponds
to ni + 1 = 0; the second column, to ni + 1 = 1. The
matrix Т is called the transfer matrix.

Since this transfer matrix is symmetrical, it can be
diagonalized by homothetic transformation, and, in
the N → ∞ limit, the expression for the grand statisti�
cal sum for one lattice site will become

(14)

where λ1 and λ2 are the eigenvalues of the transfer
matrix Т.

Formula (14) provides the basis for use of the trans�
fer matrix method. Proceeding from general relation�
ships of statistical mechanics, we can write an expres�
sion for the dimensionless thermodynamic potential
per lattice site,

(15)
and a thermodynamic relationship for the lattice cov�
erage [16, 17],
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Applying formula (16) to the simplest one�dimen�
sional LGM considered, in which all particles are
identical and only the nearest neighbors interact, we
obtain the isotherm equation for the system (Fig. 1):

(17)

where   and sinh is

hyperbolic sine.
This relationship makes it possible to pass from Eq. (8)

to the equation

(18)

that is, after an expression for  is derived from Eq. (17),

Eqs. (6) and (7) can be rewritten as

 (19)

 (20)

where cosh is hyperbolic cosine.
In the one�dimensional case considered, the

dependence of P00 on μ can be analytically expressed
using the TM method and the following familiar rela�
tionship of statistical mechanics [16, 17]:

(21)

where P11 is the probability that two nearest�neighbor
sites of the chain are occupied by adsorbed molecules
of the compound A.

With the self�consistency condition

(22)
where P10, P01 is the probability that one of the two
nearest�neighbor sites of the chain is empty and the sec�
ond one is occupied, we obtain, from [12], the following
constraints for the probabilities P00, P01, and P11:

(23)

Hence, taking into account Eq. (21) and using the
TM method, we obtain

(24)

By solving Eqs. (19) and (20), it is possible to plot
the functions θ = θ(t) (Fig. 2a) and μ = μ(t) (Fig. 2b).

In these equations, we have only microlevel char�
acteristics, such as chemical potential and the energy
of lateral interparticle interaction. Of particular inter�
est are dynamic equations for θ that would interrelate
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microscopic and macroscopic parameters. To set up
these equations, we will solve Eq. (17) for chemical
potential:
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Fig. 1. Surface coverage θ as a function of the chemical
potential μ at ε = (1) –4, (2) 0, and (3) 4.
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Fig. 2. (a) Surface coverage θ and (b) chemical potential μ
as a function of time t for Eq. (19) at ka, 0 = 0.5 and kd, 0 +
kR, 0 = 0.7: (1) RT = 1, ε = 0; (2) RT = 1, ε = 2; (3) RT = 1,
ε = –5; (4) RT = 5, ε = 2.
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(25)

where  Therefore, Eqs. (6) and

(7) can be solved without differentiating μ with
respect to t.

Now we will analyze Eqs. (6) and (7) at some lim�
iting values of ε.

(1) At ε = 0, there are no lateral interactions
between the nearest neighbors and the Langmuir iso�
therm can be obtained from Eq. (17) or expression
(25). Under the assumption that RT = 1, Eqs. (6) and
(7) will appear as Eqs. (1) and (2), which describe an
ideal adsorption layer. The kinetic models constructed
for the ideal adsorption layer model using the law of
surface mass action have been studied (see, e.g., [7]).

(2) At ε → –∞, which means infinitely strong inter�
particle attraction μ → –∞ and we arrive at equations
describing monomolecular and dissociative adsorp�
tion [12].

(3) At ε → +∞ (infinitely strong interparticle
repulsion, which is equivalent to the forbiddenness of
the nearest neighborhood), μ → +∞ if θ ≥ 0.5 and

μ →  if θ < 0.5.

By directly using the TM method, we obtain the
following expression for the isotherm:

(26)

It is clear from this expression that the limiting cover�
age is 0.5. As would be expected, if μ is expressed in
terms of θ, we will obtain

(27)

As applied to mechanisms (I) and (II), the equations
for surface coverages (Eqs. (6) and (7)) will take the
following form:

, (28)

(29)

where 

Let us analyze models (6) and (7), which equiva�
lent to (19) and (20), to see whether they allow critical
phenomena. Equating the right�hand side of Eq. (6) to
zero, we obtain the equality
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case. A qualitative analysis of the bimolecular Eley–
Rideal mechanism, which is described by Eq. (7) or
(23), yields more interesting results. The stationarity
equation for model (7) is

(31)

and it does not indicate unambiguously that there is
only one steady state. Introducing the generalized
parameters

(32)

we can derive, from equality (31), the following equa�
tions for the multiplicity curve of model (7):

(33)

Since the derivative  is negative, it follows from
the first equation of system (33) that a necessary con�
dition for the existence of multiple steady states in
model (7) is that the following inequality is satisfied in
some range of μ values:

(34)
Let us see whether this inequality is satisfiable for

particular isotherms. If isotherm (17) is realized, then,
for a positive ε value, because of the repulsion between
the nearest neighbors, the central part of the isotherm
is gently sloping and inequality (34) is not satisfies at
any μ. The case of ε = 0 corresponds to an ideal
adsorption layer, and isotherm (17) becomes the Lang�
muir isotherm and does not satisfy condition (34) at
any μ, again indicating the absence of critical phe�
nomena.

The negative values of ε correspond to matter con�
densation, and the shape of the isotherm in this case is
determined by the attraction between the nearest
neighbors. As a consequence, inequality (34) is satis�
fied in some interval (Fig. 3). However, a numerical
experiment carried our for a set of negative ε values (–4,
–5, –6, –8) did not reveal steady state multiplicity in
the one�dimensional LGM.

Now we will consider an LGM on a square lattice
and will take into account the interaction both
between the nearest neighbors (ε1) and between next�
to�nearest neighbors (ε2). In the case of repulsion
between the former and attraction between the latter,
it is possible to select model parameters such that, in
the region where condition (34) is satisfied, the multi�
plicity curve (33) will come to the positive half�plane
and Eq. (7) will describe multiple steady states. For
example, at ε1 = 2 and ε2 = –2, the isotherm for the
two�dimensional LGM intersects curve (31) at three
points representing three steady states (Fig. 4). This
fact, as well as the existence of a plateau in the central
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part of the isotherm, correlates with the phase diagram
of the system, specifically, the appearance of an
ordered C(2 × 2) phase, or a “chessboard.”

The significance of taking into account the
microlevel parameters increases with an increasing
complexity of the system. We also studied nonideal
models of mechanisms (I) and (II) in an isothermal
perfect�mixing reactor, where these models with
expressions (3)–(5) and (17) taken into account are
described, respectively, by the following systems of
ordinary differential equations:

(35)

(36)

Here, τR, A and  are the mean gas A – surface and
gas А2 – surface contact times, τR, B is the mean gas B–
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surface contact time, РА, 0 and  are the pressures of
gases A and А2 at the reactor inlet, РВ, 0 is the gas B
pressure at the reactor inlet, P* = Sn0RT/N0V (S is the
catalyst surface area, V is the reactor volume, N0 is
Avogadro’s number, and n0 is the adsorption site den�
sity), and the other variables and parameters have the
same meaning as in the above formulas.

An analysis of the stationarity equations and of
multiplicity curves for systems (35) and (36), which is
similar to the analysis of model (7), also leads to ine�
quality (34); however, in this case this criterion is only
a necessary, not sufficient, condition for the existence
of multiple steady states. The fulfillment of this multi�
plicity criterion was discussed earlier [2, 3]. As was
noted above, for isotherm (17) for the one�dimen�
sional LGM, condition (34) is satisfied in the case of a
negative ε value, i.e., in the case of attraction between
the nearest neighbors. Therefore, there can be steady
state multiplicity in systems (35) and (36) even in this
simplest case.

From the physicochemical standpoint, the steady�
state reaction rate versus pressure curve will show a
hysteresis in the criterion fulfillment region, which is
typical of systems with multiple steady states. The cor�
responding plot for mechanism (II) is presented in
Fig. 5.

It can be demonstrated that all of the above consid�
erations are also true for irreversible adsorption in
mechanisms (I) and (II) and, although the systems of
equations are simpler in this case, the SSM criterion
(34) is, nevertheless, valid. This is further evidence
that the microlevel parameters play an important, if
not decisive, role in the modeling of kinetic systems.

An analytical description of two�dimensional
LGMs is difficult to devise because of the explicit
dependence of μ on θ. For this reason, numerical
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algorithms are commonly used (see, e.g., [18]). As was
demonstrated using Eq. (7) as an example, passing
from the linear LGM to the square�lattice gas model
leads only to a qualitative complication of the behavior
of the system and, if the pressure constancy condition
is abandoned, to the possible existence of three and
even five steady states [2, 3]. The approach suggested
here can be extended to models with distributed
parameters in which the diffusion of intermediates on
the catalyst surface is taken into consideration [19]. In
addition, the TM method affords an algorithm for
constriction and analysis of nonideal models involving
two types of intermediates. In this case, it is interesting
to examine isotherms as a surface in a three�dimen�
sional space. The shape of these isotherms is deter�
mined by the character of the lateral interactions
between the adsorbed species. Here, a qualitative
complication of the behavior of the system, including
the appearance of Andronov–Hopf bifurcations, is
again possible.

Thus, we have constructed physicochemically cor�
rect unsteady�state models for the simplest catalytic
unimolecular and bimolecular Eley–Rideal mecha�
nisms. These models include a microlevel parameter
describing surface processes, specifically, the energy of
lateral interaction between adsorbed species. Even in
the case of the one�dimensional LGM, use of the TM
method, which makes it possible to calculate thermo�
dynamic functions involving the energies of lateral
interaction between adsorbed species, revealed a num�

ber of nontrivial features capable of exerting a qualita�
tive effect on the kinetics of complex processes on the
catalyst surface.
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Fig. 5. Steady�state reaction rate rR as a function of the gas
A2 pressure at the reactor inlet in the region of three steady
states for mechanism (II).


